
So�ware Development (cs2500)
Lecture 31: Abstract Classes and Methods

M.R.C. van Dongen

January 12, 2011

Contents
1 Outline 1

2 Abstract Classes 1

3 Abstract Methods 3

4 �e ObjectClass 4
4.1 Overriding equals . 7
4.2 Overriding hashCode . 8
4.3 Overriding toString . 8
4.4 Extreme Polymorphism . 8

5 For Friday 9

6 Bibliography 9

1 Outline
Today’s lecture is about abstract classes and abstract methods. As the name suggests they give us more
abstraction. In addition, they give us more �exibility.

2 Abstract Classes
Again consider the design of our Animal class hierarchy. For ease of reference it is depicted in Figure 1.
We can write Hippo hippo = new Hippo() and Cat cat = new Cat(). Using polymorphism we can
even write Animal cat = new Cat(). A�er all, Cat extends Feline, and Feline extends Animal, so Cat

1

Cat

makeNoise()

Tiger

makeNoise()

Lion

makeNoise()

Wolf

makeNoise()

Dog

makeNoise()

Feline

roam()

Canine

roam()

Animal

picture

eatsGrass

hunger

eat()

makeNoise()

roam()

Hippo

makeNoise()

roam()

Figure 1: �e Animal class hierarchy

is a subclass of Animal. Since Cat is a subclass of Animal, the substitution principle tells us that we may
use a Cat where an Animal is expected: a Cat isa Animal.

We’re even allowed to write Animal animal = new Animal(), but what kind of object is that
supposed to give us? Arguably Animal animal = new Animal() does not make any sense.

�e Animal class serves only two purposes:

• We need it for inheritance, so we can share common code, and de�ne a common protocol for
Animals.

• We need it for polymorphism, so we can write code that will still work if we add subclasses.

We never intended the Animal class to be instantiated. We want Cat and Dog objects, but not Animal
objects. Fortunately, there’s a magic spell which prevents a class from ever being instantiated.
public abstract class Animal {

…
}

Java

�e keyword abstract prevents a class from being instantiated. You write it before the word class
and the name of the class in the class de�nition. When a class “becomes” abstract javac won’t let you
instantiate it. So if Animal is abstract the following gives you a compile-time error.
Animal animal = new Animal(); Don’t Try this at Home

2

Needless to say, subclasses can be abstract too.
public abstract class Canine extends Animal {

…
}

Java

A class is called abstract if it’s de�ned with the keyword abstract. A class is called concrete if it is not
abstract.

You can still use abstract type reference variables. �is is useful for polymorphism.
Dog dog = new Dog();
Cat cat = new Cat();
Animal animal = dog;
animal = cat;

Java

But, you can only instantiate concrete classes.
Cat cat = new Cat();
Animal dog = new Dog();

Java

Instantiating an array of a concrete base class type is also allowed.
Animal[] animals = new Animal[3]; Java

�is is allowed because the result is a reference to an Array object.

3 Abstract Methods
Java also has abstract methods. Abstract methods are de�ned in abstract classes, they are de�ned with
the keyword abstract, and they have no body. �e following is an example.
public abstract void roam(); Java

As you can see from the example, a semi-colon is written where you usually have a body.
Abstract classes must be extended. Abstract methods must be overridden. Abstract methods still let

you de�ne (part of) a common protocol. �e advantage is that they let you do this without having to
implement default behaviour.

Abstract methods have no body. �ey only occur in abstract classes. �ey have no default behaviour.
Still, subclasses need abstract method behaviour as part of a common protocol. �erefore, you have to
implement the abstract method. Here, implementing the abstract method means providing the method’s
body. Every abstract method should be implemented somewhere “along” every path leading from the
abstract class to the concrete subclasses. �is may mean implementing the abstract method in an abstract
subclass. Of course, a method may be overridden, and overridden, …. All abstract methods must be
implemented somewhere.

You implement a method just like you override the method. So, if you have an abstract method
makeNoise as follows.

3

public abstract class Animal {
public abstract void makeNoise();

}

Java

�en you implement is as follows:
public class Dog extends Animal {

@Override
public void makeNoise() { … }

}

Java

Each abstract method should be implemented somewhere along each path leading from the abstract
class, which de�nes the method, to some concrete subclass. To see how this works, again consider
Figure 1. Let’s assume the methods roam() and makeNoise() are abstract methods in the abstract class
Animal. Furthermore, let’s assume the Feline and Canine classes are abstract. �ere are six concrete
classes: Cat, Tiger, Lion, Hippo, Dog, and Wolf. For each concrete class, the two abstract methods should
be implemented along the path from the abstract class to the concrete class.

• Let’s �rst look at the method makeNoise(). In our original design we implemented the method
in the concrete classes. Let’s do th same here. Clearly, the method is implemented along each path
leading from the abstract class to some concrete class.

• Next let’s look at the method roam(). In our original design we implemented this method in the
concrete Hippo class and the classes Feline and Canine, which are now abstract. Again let’s do
the same here. With this choice, which happens to be di�erent, the method is also implemented
along any path leading from the Animal class to some concrete class.

4 �e Object Class
Let’s assume we want to implement our own ArrayList class for storing Dog object references. For
simplicity we’ll store at most 5 Dog references. �e following is a possible implementation.

4

public class DogList {
private final Dog[] dogs = new Dog[5];
private int size = 0;

public void add(Dog dog) {
if (size < dogs.length) {

dogs[size ++] = dog;
}

}

public Dog get(int index) {
return ((0 <= index) && (index < size))

? dogs[index] : null;
}

}

Java

�e class works �ne, but it is not very �exible: we can only add and get Dog object references. If
we want to store Cat object references as well then we need to exploit polymorphism and implement
the array as an array of a common supertype of Cat and Dog. �e Animal class seems exactly what we’re
looking for.
public class AnimalList {

private final Animal[] animals = new Animal[5];
private int size = 0;

public void add(Animal animal) {
if (size < animals.length) {

animals[size ++] = animal;
}

}

public Animal get(int index) {
return ((0 <= index) && (index < size))

? animals[index] : null;
}

}

Java

Using our Animal class we can now write the following.

5

public class AnimalApplication {
public static void main(String[] args) {

AnimalList list = new AnimalList();
list.add(new Dog());
list.add(new Cat());
list.add(new Dog());
list.get(0).makeNoise(); // Arf. Arf.
list.get(1).makeNoise(); // Mew. Mew.
list.get(2).makeNoise(); // Arf. Arf.

}
}

Java

Wow, this class works great, but again it is not very �exible: this time we can only add and get
Animals object references (including object references from subclasses of the Animal class. You get the
dri�. If we need a class to store and retrieve any object reference we need a class which is at the top of the
object class hierarchy. �e class we are looking for is the Object class.

Every class in Java extends the Object class. If we use an ArrayList, then we can store/retrieve any
kind of object. �e following are some of the instance methods which are provided by the ArrayList
class.

• boolean remove(Object elem)

• int indexOf(Object elem)

• Object get(int index)

• boolean add(Object elem)

Many of the types of ArrayList methods use the ultimately polymorphic type Object. �is gives us
ultimate �exibility. (But see further on.)

We’ve already studied some of this, but it’s good to have another look at what’s de�ned in the Object
class. �e following are three important methods.

int hashCode(): Returns the object’s hashcode. An object’s hashcode is a number which is associated
with the object. An Object instance’s hashcode is guaranteed to be unique, but it is possible to
override the hashCode method and change this. Hashcodes have many important applications.
More about that in another lecture.

boolean equals(Object that): Returns true if and only if the object is equal to that.

String toString(): Returns a String representation of the object.

It is strongly recommended that you override these methods.

6

4.1 Overriding equals

Overriding equals makes it easier to compare objects. It allows you to perform a proper deep object
comparison.

Shallow comparison: A shallow comparison is for comparing object identity (by object reference value).
Shallow comparison is carried out using ==. Shallow comparison only returns true if two object
references reference the same object.

Deep comparison: A deep comparison is for comparing objects by the values of their relevant attributes.
A deep comparison is carried out with equals. A deep comparison only returns true if two object
references reference two objects which represent the same “notion”.

Shallow comparisons are quick, whereas deep comparisons take more time.
�e following may explain why it may be useful to implement equals in a di�erent way than the

value which is returned by this == that. A�er all, for most applications two numbers are the same if
they have the same value.
public class IntModTwo {

private boolean isEven;
public Number(boolean even) {

isEven = even;
}
public void increment() {

isEven = !isEven;
}
@Override
public boolean equals(Object that) {

return (that instanceof IntModTwo)
&& this.isEven == that.isEven;

}
@Override
public String toString() {

return (isEven ? "0" : "1");
}

}

Java

�ere is one new ingredient in this example: instanceof. As you may have already guessed from the
name, A instanceof B is true if and only if the instance A is an instance of class B . So, Dog instanceof
Animal and Animal instanceof Animal are true, but Animal instanceof Dog is not. However, if A is
equal to null then A instanceof B will always give you false.

You should only override equals if it makes sense. Speci�cally, you should always obey the contract
for equals [Bloch, 2008, Item 8]. �e contract for equals is that it should de�ne an equivalence class.
�is means that the following should be true for all object references o1, o2, and o3 such that o1 !=
null and o2 != null:

7

Re�exivity: o1.equals(o1).

Symmetry: If o1.equals(o2) then o2.equals(o1).

Transitivity: If o1.equals(o2) and o2.equals(o3) then o1.equals(o3).

Consistency: o1.equals(o3) should always return the same. (Unless the state of the referenced
objects changes.)

“Sense”: o1.equals(null) should return false.

Many classes rely on this contract. If you fail to implement it correctly your application may fail.

4.2 Overriding hashCode

Always override hashCode when you override equals[Bloch, 2008, Item 9]. �e following is the general
contract:

• �e general rule is that if the state for the computation of equals does not change then the
hashcode also shouldn’t change.

• Two object references which are deeply equal should have the same hashcode.

• Note that it is allowed to have two object references with the same hashcode which are not deeply
equal.

In short you should only let the hashcode depend on the attributes which are needed for the computation
of equals.

4.3 Overriding toString

Always override toString [Bloch, 2008, Item 10]. A good overriding implementation of toString
makes your class a nicer one. Include all interesting information in the result. �e result should be
self-explanatory.

4.4 Extreme Polymorphism
�ere is a tradeo� between making your class as polymorphic as possible and the safety you get from the
type system. Using polymorphic reference variables should be easy and safe. Avoid using polymorphic
Object reference variables if you can. Using them is not always easy. Using them is not always safe.
Instead, try using polymorphic reference variables from as speci�c a class as possible. Using them is easier.
Using them is safer.

�e following shows why using polymorphic non-Object reference variables is usually easier. In the
example which follows shortly, we add things to and get things from a list of type ArrayList<Object>.
With this list we can add object references of any type. However, when we want to get object references
from the list it gets complicated.

8

In the example, our �rst complication is that we need to cast the Object reference to a Dog reference
as the compiler isn’t aware of the types of the actual instances which are referenced by the things in the
list. �is makes using the list awkward.

Our second complication is that we may write programs which are �ne at compile time but which
fail at runtime. For example, the call list.get(2) returns is a House reference. When the program is
run, casting the House reference to a Dog reference will cause the program to halt with an exception.
Dog dog1 = new Dog();
Object dog2 = new Dog();
House house = new House();
ArrayList dogList = new ArrayList();
dogList.add(dog1); // Grand: Dog is subtype of Object.
dogList.add(dog2); // Grand: This is an Object reference.
dogList.add(house); // Grand: House is subtype of Object.
dog1 = (Dog)dogList.get(0); // We need the cast.
dog1.makeNoise(); // Arf. Arf.
dog1 = (Dog)dogList.get(1); // We need the cast.
dog1.makeNoise(); // Arf. Arf.
dog1 = (Dog)dogList.get(2); // Compiler allows it but runtime exception.
dog1.makeNoise(); // We don’t even get here.

Don’t Try this at Home

If we use an ArrayList<Dog> for our list then several things change. First we’re not allowed to add
the Object and House object references to the list. (�e compiler doesn’t know that dog2 is actually
referencing a Dog object at the moment of the call dogList.add(dog2). All it looks at is the type of
the reference variable.) Second, we no longer need casts to get object references from the list. Finally,
we can be sure that whatever comes from the list is a Dog reference. In e�ect using a restricted type for
our polymorphic reference variable made it easier to write this version of the program. In addition it
allowed the compiler to disallow certain kinds of statements which were not safe.
Dog dog1 = new Dog();
Object dog2 = new Dog();
House house = new House();
ArrayList<Dog> dogList = new ArrayList<Dog>();
dogList.add(dog1); // Grand: Dog is subtype of Dog.
// dogList.add(dog2); // Not allowed: Object doesn’t extend Dog
// dogList.add(house); // Not allowed: House doesn’t extend Dog
dog1 = dogList.get(0); // We no longer need the cast.
dog1.makeNoise(); // Arf. Arf.

Don’t Try this at Home

5 For Friday
Study the lecture notes, and study Pages 197–216.

6 Bibliography

References
[Bloch, 2008] Joshua Bloch. E�ective Java. Addison–Wesley, 2008.

9

	Outline
	Abstract Classes
	Abstract Methods
	The Object Class
	Overriding equals
	Overriding hashCode
	Overriding toString
	Extreme Polymorphism

	For Friday
	Bibliography

